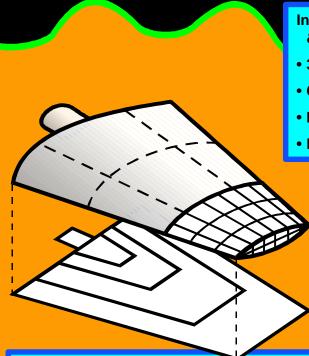


Engineering Analysis Background

- Interoperable suite of Engineering Analysis (EA) APs/Modules
 - Material Services Information (Material properties & allowables)
 - AP209 (DIS document currently in development) will be part of EA suite
 - More APs/Modules may be identified later
- APs/Modules will rest on an integrated EA Core Model (Part 107) foundation

AP209: Composite & Metallic Analysis & Related Design

Analysis Discipline Product Definitions


- Finite Element Analysis
 - -Model (Nodes, Elements, Properties,...)
 - -Controls (Loads, Boundary Constraints,...)
 - -Results (Displacements, Stresses,...)
- Analysis Report

Design Discipline Product Definition

- Shape Representations
- Assemblies

Configuration Control, Approvals

- Part, product definitions
- Finite element analysis model, controls, and results

• 3D Shape Representation

- AP202/203 Commonality Plus Composite Specific 3D Shapes
 - -Advanced B-Representation
 - -Facetted B-Representation
 - -Manifold Surfaces With Topology
 - -Wireframe & Surface without Topology
 - -Wireframe Geometry with Topology
 - -Composite Constituent Shape Representation

Information Shared Between Analysis & Design

- 3D Shape Representations
- Composite Constituents
- Material Specifications & Properties
- Part Definitions

Composite Constituents

- Ply Boundaries, Surfaces
- Laminate Stacking Tables
- Reinforcement Orientation

Material Specifications & Properties

- Composites
- Homogeneous (metallics)

Engineering Analysis Accomplishments Since the Last Offsite

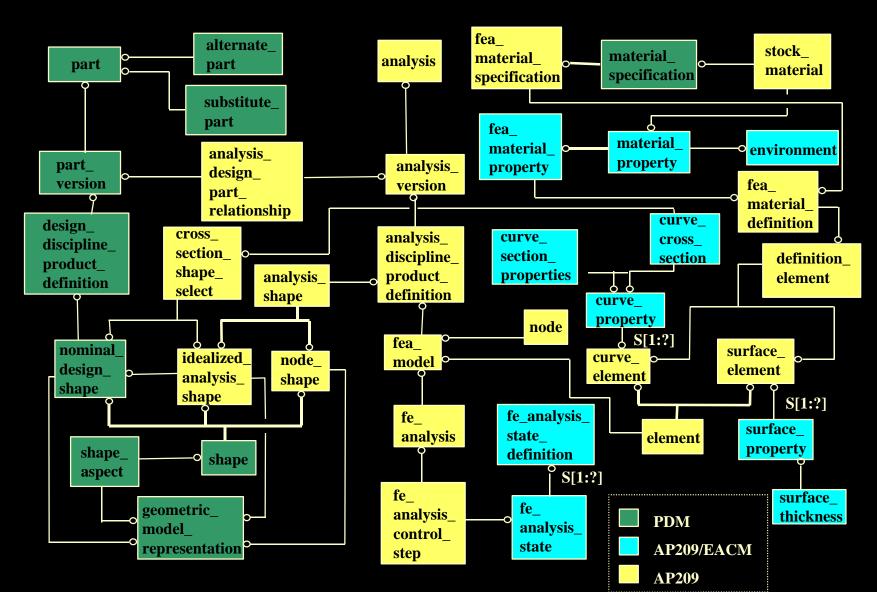
- AP209 (Composite and metallic structural analysis and related design)
 - DIS document updated based on Qualification Review
 - Finalized AP209 Concept of Operations document
- Conducted TAC demonstration and workshop; defined scenario for Fall '99 demonstration
- Conducted harmonization/modularization workshop with Engineering Analysis core Model (EACM)

Engineering Analysis Plans for the Next Quarter

- AP209
 - Deliver and promote DIS of Parts 104 and 209 to ensure successful ballots
 - Continue defining Proof of Concept demo for next TAC
- Continue modularization and harmonization of AP209 and EACM
 - EACM expert participating in Offsite
- Distribute AP209 coverage analysis

Engineering Analysis Challenges

- Harmonization of Engineering Analysis Core Model (EACM) with existing STEP APs
 - Significant semantic integration issues due to differences in modeling style
 - Use module architecture as basis for integration
- Gaining vendor support for AP209
 - Continue to foster encouragement from industrial users through demonstrations
 - Promote to NAFEMS to reach larger audience
 - Improving translator quality
 - Distributed Recommended Practices document and expand test data through prove-out activities



Engineering Analysis Challenges (Cont'd)

- Breadth of requirements
 - Distribute AP209 coverage analysis; work with NAFEMS
 - Continue to build on AP203/AP209, adding capabilities through modules

PDM Schema/AP209/EACM Integration

- Number one STEP/GEM/EACM integration issue is how to accommodate the GEM/EACM architecture within the context of the existing STEP modular architecture
 - This will mean significant change to the root of the GEM/EACM
- The mathematical representation schema required to represent varying fields is currently not enjoying wide support
- Property and specification need a closer look to see how they will be integrated with core STEP modules
- GEM/EACM brings many new capabilities to the table

Starting Point for EA Extensions

- Integration with STEP/TAS thermal analysis work
- Non-manifold geometry to support meshing
- Mathematical varying field representations
- Structured grids (commonly used in CFD, heat transfer)
- Property assignment
- Time varying states
- Nonlinear analysis extensions (material, geometric)
- Multi-physics analysis integrations (Basic GEM/EACM goal)
- Mesh independent analysis (Basic GEM/EACM goal)